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A normal magnetic field has a destabilizing influence on a flat interface 
between a magnetizable and a non-magnetic fluid. Stabilizing influences are 
provided by interfacial tension and gravity if the lighter fluid is uppermost. 
The critical level of magnetization for onset of the instability is derived for a. 
fluid having a non-linear relation between magnetization and magnetic in- 
duction. Experiments using a magnetizable fluid, which contains a colloidal 
suspension of ferromagnetic particles, at  interfaces with air and water are 
made and cover a wide range of density differences. Measurements confirm the 
prediction for critical magnetization, and it was found that, after onset, the 
interface took a new form in which the elevation had a regular hexagonal 
pattern. The pattern was highly stable, and the measured spacing of peaks 
agreed reasonably with that derived from the critical wave-number for the 
instability of a flat interface. 

1. Introduction 
Fluids with ferromagnetic properties have recently been synthesized on 

a laboratory scale (Rosensweig, Nestor & Timmins 1965). They are formed by a 
colloidal suspension of solid ferrite particles in a parent liquid. To stop the 
particles coalescing in the well-known manner of iron filings in a magnetic 
field, their size is made small enough for thermal agitation to have a significant 
dispersive influence, and they ar0 also coated with a layer of surfactant which 
provides short-range repulsion. The resulting material behaves like a normal 
fluid except that it can experience forces due to magnetic polarization. So 
far, the successfu1 fluids have been good insulators, and forces due to the inter- 
action of magnetic fields with currents of free charge, familiar in magneto- 
hydrodynamics, can be taken as negligible. In  the present work, we shall discuss 
some experiments on the sta.bility of a flat interface between a ferromagnetic 
and a non-magnetic fluid in the presence of uniform, normal, magnetic and 
gravitational fields. 

Our interest in the problem is due partly to the unexpected observation 
that an instability occurred readily on a laboratory scale, partly to its tech- 
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nological importance because the instability sets a limit to some engineering 
applications, and partly to the fact that interfacial phenomena provide one 
area where the fluid mechanics of a ferromagnetic liquid differs from that of a 
non-magnetic material. As discussed in $2.2 and appendix B, the magnetic 
forces cannot induce circulation in the absence of temperature gradients, and 
it is therefore possible for them to be balanced by pressure forces alone. In- 
compressible flow patterns remain unaffected by the forces (only pressure 
distributions are altered) unless there is a boundary condition which involves 
the pressure directly-as at an interface. If the magnetic force is to have any 
engineering application to the control of fluid motion, there must be aa inter- 
face or possibly temperature gradients. Some fluid-mechanic problems involving 
the latter have been discussed recently by Neuringer (1966). 

It is clear from the work of Melcher (1963) that a flat interface between 
two stationary fluids of which one at least is ferromagnetic may be unstable 
when there is a normal magnetic field. If the surface is perturbed, the magnetic 
flux is concentrated at the peaks, and the resulting forces tend to drive the 
perturbation further, while surface tension and gravitational forces (assuming 
light fluid over heavy) have a stabilizing influence. The instability is very similar 
in nature to that found at  the interface between conducting and dielectric 
fluids in the presence of electric fields, and recently described by Melcher 
(1963) and Taylor & McEwan (1965). One of the important differences which we 
find experimentally in the ferromagnetic case is that a stable interface with a 
regular periodic structure (see figure 5 ,  plate 2) is formed when the flat one can 
no longer be supported. This feature allows us to measure the spacing of the 
interfacial perturbations for comparison with the prediction of the usual type of 
linear theory. 

Before giving the results of the experiments in $3, we need to derive the 
stability criterion which will be valid for our ferromagnetic fluids, where the 
relation between the magnetic field B and magnetic induction H is non-linear, 
but no hysteresis effect has been observed, although this fact has not been stated 
explicitly in previous work. The successful prediction of magnetic behaviour by 
Langevin’s classical theory (see Rosensweig et al. 1965) suggests that hysteresis 
is unlikely, and therefore that B and H can be assumed to be parallel. The 
criterion ic found to be similar to that implicit in Melcher’s (1963) work for a 
linear material. 

2. Analysis 
Using a Cartesian co-ordinate system (x, y, z) ,  we suppose that for unper- 

turbed conditions the region z < 0 is filled with a homogeneous ferromagnetic 
fluid, while the fluid in z > 0 is non-magnetic. A uniform magnetic field B, lies 
in the z-direction. Gravity is considered as acting in the opposite direction when 
the region z < 0 contains the denser fluid and towads positive z when the 
denser fluid is in  the region z > 0. Electromagnetic and fluid properties in the 
magnetic and non-magnetic media are distinguished by the subscripts 1 and 3. 
M.K.S. units are used in the analysis. 
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We then look for the condition of neutral stability of the interface, i.e. 
the condition which allows it to rest at  a position z = zo(x, y), where z, is a 
periodic function of small amplitude in comparison to wavelength. 

2.1. The perturbed magnetic field 

We linearize the magnetic-field problem by writing 

B = B,+b, H = H,+h, (1) 

where the magnitudes of b and h are assumed small in comparison to H ,  and 
B,. To first order, the change in the magnitude B is related to that in H by the 
slope of the (B, H)-curve, so that 

I b, = Fh,, 
f i =  BBIaH at H = H,. 

f i  is then an effective permeability for perturbations of the z-components. 
Assuming B and H are parallel, we also have 

and p is the effective permeability for transverse perturbations. 

terms of a magnetic perturbation potential $, where 
Since there are no free currents, h is irrotational and can be expressed in 

h = grad$. (4) 

Substituting from equation (4) in (2) and (3) and using the fact that b is 

( 5 )  
solenoidal, we obtain a2$ a24 ^ a 2 4  

ax2 ay2 ax2 
p-+p-+p- = 0. 

In  the non-magnetic medium, ,G = p = ,uo, the permeability of free space, and 
(5) naturally reduces to Laplace’s equation. 

Linearizing the boundary conditions, continuity of the tangential com- 
ponents of H requires 

[h, + H, az,/ax] = 0, [h, + H ,  azo/@/] = 0, 

where the squa.re brackets denote the jump in the quantity enclosed. Express- 
ing h, and h, in terms of the magnetic potential and integrating, we obtain 

[$I = -zo[Hol, (6) 

having arbitrarily set the constant of integration to zero. Continuity of the 
normal component of B requires 

[b,] = 0. ( 7 )  

In  accordance with the linearization we apply the conditions at z = 0, and also 
it is convenient to express equation (6) in terms of the magnetization M, where 

43 
B = po(M + H). (8 )  
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Since [B,] = 0, we have [No] = - [H,], and the conditions (6) and (7) may be 
given in their final form as 

$1 - $2 = @fo, 

where we have dropped the subscript 1 on M,, f i  and p since only the one fluid 
is magnetized. Note that the f i s t  condition of (9) is equivalent to a distribution 
of magnetic sources with strength proportional to height of perturbation. 

Seeking a solution which allows for periodic variation in x ,  and for which the 
perturbations decay with distance from the boundary, we find in the magnetic 
fluid 

where r is a composite relative permeability J(,&u/pi), and in the non-magnetic 
material 

(11) 
rz,M, exp ( - Icz) 

l + r  

Ic is the wave-number of the interfacial disturbance, which must satisfy 

The perturbation of the field magnitude at  the interface is then 

which implies a concentration of flux at  the peaks of the disturbance with 
b, a maximum where x, is maximum. 

2.2 .  Magnetostatics 

It is convenient to represent the stress tensor in a stationary ferromagnetic 

(14) 
fluid by 

This equation is believed to be valid for a fluid with a non-linear (B, H)-relation, 
and its derivation by the usual thermodynamic arguments is discussed in 
appendix A. Since B and H are parallel, the last term can also be written as 
H j B ,  or ( B I H )  Hi Hj = pH, Hi. The latter is the usual expression for the stress 
due to tension along field lines found in linear theory (see, for example, 
Landau & Lifschitz 1960). The isotropic part of the stress tensor is expressed 
merely for our convenience in terms of a particular magnetic pressure, while the 
remainder is defined as an effective pressure p*. In  continuum theory the 
definition of pressure is arbitrary, and, as Brown (1951) pointed out, this 
fact recondes some of the conflicting expressions for magnetic forces which 
have been given in the past. In  a compressible fluid further details of p* would 
be necessary in order to relate it to the thermodynamic state, expressed, say, in 
terms of density, temperature, and magnetic induction (see equation (A 6)))  
but in the present incompressible problem the information is unnecessary. 

vij = - (p* + +p0H2) Sij + Hi Bj. 
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The i-component of the force f per unit volume exerted on a fluid element is 
given by acrij/i3xj, so that from (14) 

f = -gradp* -,uoHgrad H + Hdiv B + (B .grad) H, 

and using a well-known vector identity we write 

(B . grad) H = ( B / H )  (H . grad) H 
= (curl H) x B + B grad H.  

Substitution gives 

f = -gradp*+(curlH)x B+poMgradH, (15) 

where we have introduced the magnetization from equation (8)) and set div B = 0, 
The second term in the expression for f is the usual force due to free currents and 
will be zero here. If we assume that Mis  a function of H and temperature T 
only (i.e. the fluid is homogeneous in composition), the last term can be expressed 

grad p o M d H  
as 

in an isothermal fluid, and is irrotational. Then no circulation would be induced 
by the magnetic force in an incompressible fluid. For our linearized theory the 
term can be written as poMo gradh,, and then, adding the effect of gravitational 
forces to (15)) we find that under conditions of fluid equilibrium 

s 

p* fp.z-,uoMohz = const., (16) 

the positive and negative signs being taken for gravity acting in the directions 
of - z and + x respectively. The question arises as to whether our formulation is 
adequate in the face of small but finite compressibility. The elementary argu- 
ments of this section are supplemented by a more rigorous justification in 
appendix B. 

From equation (14)) the change in tangential stress across the interface 
[H,,, B,] is zero, as it should be, since tangential H and normal B components are 
continuous. The change in normal stress is given by 

[flzzl = - rP* + ib0H21 + C~,B,I 
= - [P*l+ ( l /PO) [-Ii(B*-PoM,)z+Bz(B,-,uo~,)l. 

Hence [fl,,l = - [P*l- [*,uoJCl, (17) 

where again we have used the facts that tangential H and normal B components 
are continuous. A normal stress difference, as given by (17)) can be supported by 
the interfacial tension T, where to the order of approximation required 

using equation (12). Substituting from (17), we replace M,” by the linear approxi- 
mation M: + 2M0m,, where m,is the perturbation magnetization, and use equation 
(16) to eliminate pf andp;, thus obtaining 

poMom, +poMOhz 1- p2gzo T plgzo - k2Tzo = const. - &uoMi. (18) 
43-2 
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It is during the last step that any ambiguity introduced by the arbitrary de- 
finition of p* is removed. Thus, if we re-define p* by inserting an extra function 
of H and B in the isotropic part of the stress tensor (la), the magnetic body force 
in (15) and the interfacial stress difference (17) are both modified, but the effects 
cancel in deriving (18). 

Equation (18) is satisfied by setting both sides equal to  zero, and therefore 

n.lo b, = ( g  Ap + E2T) z,, (19) 

where b, = po(m, + he) is evaluated at z = 0 and Ap is the density difference across 
the interface, defined to be positive. 

2.3. stability criterion and discussion 

Substituting b, at x = 0 from equation (13) in equation (19) we obtain the con- 
dition for zo + 0 as 

In  general we might expect T to be a function of the thermodynamic state of the 
fluid and hence of the magnetization, but we have found no experimental 
evidence to suggest a significant dependence, and we assume it to be constant. 
The minimum value of the magnetization which can support a neutrally stable 
perturbation of the interface is given by 

poMt/( 1 + l /r)  = g Ap/k + kT. (20) 

and the wave-number under these conditions is 

hcrit = J(gAp/T)* (22) 

The expression (21) for Merit can be related to the analysis of Melcher (1963), 
who works in terms of H and p, for a linear material. The present form em- 
phasizes the fact that it  is the magnetization which is the important quantity. 
The range of l / r  lies between unity for a poor material (low effective permeabi!ity 
or well past saturation) and zero for infinite permeability. Hence, even if r is 
unknown, (21) predicts the critical magnetization within a factor 42 .  (Using the 
reasonable assumption B / H  9 aB/aH 9 po closer limits can be specified in terms 
of B, and H,.) Kerosene has been the usual parent liquid for t'he ferromagnetic 
fluids, and, inserting kerosene values of surface tension and density for T and Ap 
in (21), we obtainMCri, < 6.7 x 103A/m (pOMcrit < 8.4 x Wb/m2 = 84gauss). 
This value of magnetization is low by ferromagnetic standards, and it is not 
surprising that the interfacial instability became dramatically apparent in 
the early stages of the development of the fluids. 

The limit of r -+ 00, infinite permeability, provides the exact analogue of the 
instability of the interface between conducting and dielectric fluids in the 
presence of electric fields (Melcher 1963; Taylor & McEwan 1965). The interface 
becomes a surface of constant magnetic potential (compare the condition of 
constant electric potential), and we have M, = B,/p,, = H,, in the non-magnetic 
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medium, which is the gradient of the magnetic potential and the analogue of the 
voltage gradient. 

For the sake of simplicity in the above analysis, we have assumed infinite 
depth of ferromagnetic fluid. Finite depth would make no difference in the case 
of r -+ co, but for our fluids r is less than 1.9. It is clear from equation (10) for 
the perturbation potential that the scale length is l/kd(p/$), and the effect of 
finite depth d is negligible if kd4(,u/fi) $ 1. A more detailed analysis has been 
made for the case of a solid boundary at  z = - d ,  the infinite region z < - d  
being non-magnetic. The resulting modification to (20) gives a correction factor 
a to the left-hand side, where 

2: I-{z(Y- l ) / ( r+ 1)2}exp{-2kdJ(p/,2)}.  (23) 

It is interesting to note that no correction is necessary for a poor material, r -+ 1. 
In this limit the field perturbation is that due to a sheet of sources of magnetic 
potential at x = 0 with strength Maxo, while the surrounding regions are effec- 
tively non-magnetic everywhere; the presence of a solid boundary at  z = -d  
is then unimportant. For our recorded experiments, the minimum value of kd 
was 5.5,  and the correction clearly has negligible influence on the critical values 
of M, and k. 

Finally, we can relate the wave-number to a measurable quantity, such as 
spacing between peaks 1 if we assume a shape for the perturbed interface. In our 
experiments the patterns were predominantly hexagonal (see figure 5, plate 2 )  
and could have been members of the family of solutions to equation (12) : 

xo = €{COS $k( 2/32 + y) + cos $k( 2/3x - y) + cos (ky  + 8)) 

= €{COS 4 4 3 k z  cos Qky + cos ( k y  + S)), (24) 

where 8 is a parameter which controls the height of peaks above mean to depth 
of troughs, as indicated in table 1. 0 = 0 represents high peaks above a plateau 
of shallow depressions, while for 8 = in the surface is symmetrically distributed 
about x = 0. These cases were discussed in detail by Christopherson (1940). For 
all values of 8, the spacing between one peak and the next nearest for the critical 
condition is given by 

(25 )  lcrit = 4n/( 43  kcrit). 

Height of peak Depth of  trough 
0 above mean below mean 

0 3E 3612 

3 J 3 e / 2  3 J3 €12 
77 3e/2 3E 

TABLE I 
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3. Experiment 
3.1. Pluid properties 

The ferromagnetic fluids used in the experiments were prepared by grinding 
magnetite to particles of submicron size in a parent fluid of kerosene to which 
5.8 yo by weight of oleic acid had been added. Oleic acid provides the surfactant 
which prevents flocculation of the particles, and it is believed that less than 10 yo 

b 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

PIP, 
FIGURE 1. Fluid properties. Variation of interfacial tension T and saturation magnetization 
Afs with relative density pipo where po = 792 kg/ms, the density of pure kerosene. 0, ten- 
siometer measurements; 0, drop-weight measurements. 

of the surfactant remains unattached in the finished fluid. The solid magnetite 
has a saturation magnetization M, of 4.5 x 105 A/m (poJls = 0.566 Wb/m2) and 
density of 5000kg/m3 compared t o  a density po = 792kg/m3 for the kerosene. 
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For tests of an interface below either air or distilled water, a fluid of density 
1 . 8 6 3 ~ ~  was prepared, and subsequently diluted with pure kerosene to  give a 
range of densities and magnetization curves. In  the following discussion we shall 
refer to the fluids in terms of their relative density p/po. 

0.9 0.8 t 
0.7 

0.6 

0.3 

0.2 

H (104 Aim) 

FIGURE 2. Universal magnetization curve. Initial slope 1.66 x 10-5m/A. 

Magnetization curves were determined by inserting a cylindrical sample of 
the fluid with a length to diameter ratio of four into a region of uniform field. 
A ballistic galvanometer connected to a search coil surrounding the region re- 
corded the change in magnetic flux. The measured values of saturation magnetiza- 
tion shown in figure 1 were found to vary linearly with density of the fluid to 
the estimated accuracy of the experimental readings, & 1.5 %. Extrapolation to 
the density of magnetite gives 65 yo of the saturation value of the pure solid; the 
discrepancy is thought to be due to foreign particles introduced during the 
grinding. Similarly, magnetization at  any value of H was found to vary linearly 
with density, and we give the general relation of HIM, to H in figure 2. 

Surface tension was measured by the drop-weight method and also with a 
Du Nouy tensiometer (see, for example, Davies & Rideal 1963). The former 
method gave reproducible results, whose values, however, depended on the size 
of tube used to form the drops, and we have more confidence in the results of 
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the second method, in which a wire ring is pulled away from the interface. 
Results of the measurements are shown in figure 1. Each point represents an 
average of five determinations with standard deviation 0.5 yo or less. Additional 
values given by the drop-weight method are included to show the possible 
uncertainty. The variation of the interfacial tension with density is not great 
(as measured by the tensiometer), and we have therefore chosen mean values of 
0*0275N/m for the air interface and 0*0173N/m for the water interface. Since 
kerosene is not a pure compound, but a mixture of a number of components, 

I 7+ 

FIGURE 3. Experimental arrangement. The regulated power source supplies current through 
the ammeter A to the coils C and subjects the ferromagnetic fluid P to an approximately 
uniform normal, magnetic field. 

published values for the surface tension vary between 0-023 and 0*030N/m at 
20,'C (Leslie & Geniesse 1933). Our measured value of 0*029N/rn for pure kero- 
sene and air is within that range and is close to the one chosen for the ferro- 
magnetic fluid, while pure kerosene and water gave 0-0374N/m. In the latter 
case, the difference from 0.0173 N/m is due to the fact that the interfacial tension 
with water is dependent on the presence of oleic acid. 

3.2. The interfacial phenomena. 

Two coils, arranged approximately as a Helmholtz pair, provided the magnetic 
field for the tests (see figure 3). The current supply was measured by an am- 
meter which was calibrated against level of magnetic field between the coils 
using a Bell type 120 gaussmeter with Hall probe and standardizing magnets. 
The field was uniform to 2.3% over the half radius at  the test position of the 
interface and 11 yo over-all, while the presence of the strongest ferromagnetic 
fluid altered the field calibration by 5 % (allowed for in the case of the strongest 
fluid only). 

For the test recorded in $3.3 of an interface between air and ferromagnetic 
fluid, a glass Petri dish of 10 em diameter was filled to a depth of 16-20 mm and 
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placed between the coils. As the strength of the magnetic field was raised from 
zero, the interface remained flat initially except at the edges. There the curved 
surface due to capillary attraction and field fringing allows an interaction 
with the magnetic field (the fluid tended to climb up the glass wall). At a particular 
level of field, which was taken to be the critical Bcrit, the pattern of light reflexion 
at the centre changed, indicating a small perturbation. Increasing the field by 
less than 3 %  usually produced a clear central peak surrounded by six hexa- 
gonally arranged lesser peaks (see figure 4, plate 1). With further increase, the 
amplitude of the peaks grew, and more peaks were formed until, at  a field 
level approximately 10 % above critical, the whole interface was covered 
except for a narrow band near the edges. The final pattern formed a remarkably 
regular hexagonal array, apart from a few dislocations, with approximately 
uniform amplitude throughout (see figure 5, plate 2). We do not know why the 
hexagonal pattern is preferred; possible reasons include not only second-order 
effects but also the circular boundary of the dish and the slight non-uniformity 
of the field, which retained axial symmetry. 

The interface appeared to have the elevation pattern of the zero-8 member 
of the family given by (24) (see table I ) ,  but no precise measurements of surface 
profile were taken.t 

The spacing between peaks varied from 12 to 9-5 mm for the tests of an inter- 
face with air, and approximately fifty peaks would be formed at full coverage. 
In  any one test the spacing appeared to remain constant from the first small 
deflexion of the interface to a point where the amplitude was sufficient for 
accurate measurement with a pair of non-magnetic dividers. With further 
growth no change could bemeasureduntil at a height which was muchlarger than 
the spacing a slight deviation could be detected (in one case the pattern changed 
to square array at  a field 40 yo above critical). 

The interfacial pattern was highly stable and, if the fluid was stirred slowly, 
would re-form immediately behind the stirrer. When the field was raised enough 
to make the peaks grow into long spikes, attempts to chop them off with a non- 
magnetic blade were fruitless; the blade merely passed through. 

Similar tests to the ones described above were run with a layer of distilled 
water over the ferromagnetic fluid in order to give smaller density differences 
and interfacial tension. A fluid of relative density 1.522 gives a critical spacing 
which is nearly twice that of the air tests (see figure 7) ,  and consequently the size 
and shape of the container could be more important. However, a t  the onset of 
the instability, it formed a clear pattern of a central peak with six surrounding. 

We also tried the following tests: air and a fluid of low magnetization at  satura- 
tion, water above a fluid of only slightly greater density, and water below a 
fluid of slightly lower density. In  these cases the interface deformed greatly 
before the instability occurred because non-uniformity of the field could cause 
large magnetic forces in comparison to gravitational. A more significant test 
was that of an interface between ferromagnetic fluid and a thin layer of mercury. 

t The photographic technique of figure 5 picks out flats on the interface, i.e. peaks, 
troughs and saddles. The positions of the latter for 6' = 0 correspond well with the light 
pattern shown. 6' = &T would give a measurably different pattern. 
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We observed the point at which the mercury layer was pierced since the ferro- 
magnetic fluid is also opaque. The thinnest layer of mercury which would cover 
the bottom of the container corresponded to 2/kC,,,, where kcrit is the calculated 
value, so that the perturbation was not small at the point of observation. How- 
ever, the test gave a reasonable value of magnetization at 30 yo above critical. 

- 

- 

1 1-1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

PIP0 

FIGURE (3. Comparison of ths predicted critical magnetization with experiment. 

3.3. Results 

Since properties of the ferromagnetic fluids are expected to vary continuously 
with relative density, we have taken that as the experimental variable. The 
expression for the critical magnetization (21) can be written in non-dimensional 
form as 

where po = 793 kg/m3 and T, = 0*0275N/m, the values for pure kerosene. On 
the right-hand side r depends on the magnetization as well as the relative 
density. Similarly, spacing for hexagonal patterns from (22) and ( 2 5 )  can have 
the form 

The predicted curves for air and water, showing the variation with relative 
density p/po of thess non-dimensional forms of Merit and lcrit, are givenin figures 6 
and 7 .  The critical magnetization for an air interface is nearly constant; although 
a slight density dependence might be expected from equation (26), it is offset 
by the increase in the effective permeability r .  At a water interface the critica 
magnetization falls to zero for zero density difference and this point separates 
a part of the curve corresponding to water below from a part with water above. 
Experimental points are shown with error bars for the estimated uncertainty in 
deriving the magnetization from the measurement of magnetic field and the 
experimental determination of the magnetization curve (figure 6). In  figure 7 
bars indicate the estimated uncertainty in measurement of the spacing. Errors 
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due to uncertainty in the interfacial tension are not included. If the tensiometer 
measurements are to be believed, the choice of a mean value of 0.0173 introduces 
an additional error of less than 1 yo in magnetization and less than 2 yo in spacing 
for the water interface, while errors for the air interface are negligible. However, 
if the drop-weight measurements truly indicate the uncertainty, additional 
errors for a water interface could be 2% in magnetization and 4 %  in spacing, 
while for the air interface they could be 5 and 10 yo. 

02 0'4 t 
0 
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

PIP0 

FIGURE 7. Comparison of the predicted critical length with experiment. 
x , saturation limit. 

The results for the critical magnetization at an air interface, for which the 
&-power density dependence is weak, confirm the prediction of (26) that it is the 
level of magnetization which is the important quantity for determining the 
onset of instability. It is worth recording that the critical magnetic field varied 
by a factor of 2.5 in the air-interface tests. Density dependence in the water- 
interface tests is more significant, but the variation is hardly beyond the range 
of estimated error. However, the relationship between the different curves is 
adequately predicted, and thedensity difference varied by a factor of 7.2 between 
the weakest ferromagnetic fluid with water and the strongest with air. Simul- 
taneously the interfacial tension varied by a factor of 1-59 between water and air, 
so that the effect on critical magnetization was not great. However, the test with 
mercury described in $3.2 added a further factor of 8.2 to the density variation 
and 12.7 for the interfacial tension. Although the actual critical magnetization 
can only be said to be less than 1.3 times that predicted for mercury, there is 
a reasonable indication that the power law is being followed. 

The results for critical spacing (figure 7) are remarkable for the type of pheno- 
menon; of particular note is the agreement for the case of the water interface 
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where the *-power density dependence gave a reasonable variation. The case of 
an air interface with relative density 1-522 was repeated, but in each case gave the 
result recorded. 

4. Conclusions 
From the experimental results we concluded that the observed instability 

was of the type suggested by Melcher (1963) ; i.e. it was governed by the stabilizing 
influences of gravity and interfacial tension. The theory for a non-linear material 
emphasizes the importance of magnetization as a critical field quantity, and 
this is confirmed although the degree of non-linearity was not great (1CICcrit/Ns 
ranged from 0.3 downwards-see figure 2). A more sensitive prediction is the 
dependence of equation (26) on the factor (1 + l/r)+, but this quantity only varied 
by 8 % over the whole range of the experiments, and the order of accuracy re- 
quired to show the effect is far greater than could be expected in an experiment 
involving interfacial tension. 
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The work was supported in part by NASA Research Grant NGR-22-009-052 
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Appendix A. The stress tensor in a magnetizable fluid 
To allow for a non-linear (B,H)-relation when hysteresis is absent, only a 

minor modification is necessary to the theory which gives the stress tensor in 
linear materials. The latter is derived by thermodynamic arguments in several 
text-books (see, for example, Landau & Lifschitz 1960). Since the topic is an 
unfamiliar one in fluid mechanics, we shall outline a complete derivation, choos- 
ing a method which is similar to that of Landau & Lifschitz, but more direct, 
since they work by analogy from the stress in an electrically polarizable material. 
The derivation is based on the fact that the change in free energy during an iso- 
thermal deformation is equal to the sum of the work done on the fluid by the 
unknown stresses and of the work delivered electromagnetically via field coils. 

We consider a homogeneous layer of fluid which is confined between parallel 
planes (see figure 8). A uniform magnetic field can be generated by sheet currents 
in the planes and returned through an external path of zero reluctance. The angle 
of the field is determined by the current connexions in the following way. 
We can choose a closed loop, consisting of a straight line (e.g. PQ) across the 
layer of fluid and completed through the zero reluctance, which links no total 
current. Then the line integral f H . dl is zero, and, since H = 0 outside the fluid, 
there can be no component of H (and B if parallel) along PQ. We indicate this 
schematically in figure 8 by showing discrete wires, rather than sheet currents, 
connected a t  an angle $to the bounding planes, so that H and B are directed at  
$7 + @. The exterior has to act also as a, constant-temperature reservoir. 

If the bounding planes are held rigidly (no deformation of the fluid) while H 
is increased under isothermal conditions, the change in free energy P per unit 
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volume in the layer is just the electrical work H d B .  The condition of zero re- SB 
luctance outside implies that no field energy can be stored there. F is defined as 
U - TS ,  where U, T and S are internal energy, temperature and entropy. Hence 
we have 

where Fo is the free energy at the same density and temperature, but zero H ,  
and the integral is to be considered as the area under the (B, H)-curve for con- 
stant density and temperature. 
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FIGURE 8 

Suppose now that the fluid is deformed by giving one bounding plane an 
infinitesimal displacement 5, which is not necessarily parallel to  the unit normal 
of the plane n. The gap width a is inereased by 6a, where 6a = g. n. During 
the deformation the temperature remains constant, and current to the field 
coils is adjusted so that the flux linked by the current does not change.? The latter 
condition implies that no electrical work is delivered, but from the surface 
stress vij there is mechanical work per unit area 

gij&ni = ~ ( F u ) .  (A 3 )  

Using the fact that 6aia = Cfviv, where v is the specific volume, and introducing 
(A 1) ,  we obtain 

t The Landau & Lifschitz (1960) analysis is equivalent to taking a deformation at  con- 
stant current. 
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The magnetic field decreases in proportion to the increase in distance between 
connected wires of the field coils. Since the direction of the line which measures 
this distance is pwallel to ( B  x n) x B ,  we have 

6B/B = - (B x n)  x B ) .  E,/B2a, 

or a6B = -BE,.n+(E, .B)(B.n)/B.  

Substitutionin (A3) gives 

which is easily shown to be equivalent to the expression derived by Landau & 
Lifschitz (1960), and will be true for all if 

Finally we use a well-known thermodynamic relation which shows the first 
term in the braces to be -po, where po is the pressure at the same density and 
temperature, but for zero H ,  and introduce the magnetization 

for which we emphasize that the integration is to  be carried out at  constant 
density and temperature. 

If we combine the integral in (A 6) with po and define the sum as an effective 
pressure p*,  we obtain equation (14). However, it is worth noting that vM is the 
magnetization per unit mass, which may not vary significantly with density in 
the colloids, since the bulk modulus of the parent fluid, kerosene, is less than that 
of magnetite by a factor of more than 100. The compressibility of the kerosene 
may be the dominant effect in changes of volume, while the evidence of $3.1 
suggests that the magnetizing effect of the solid particles may depend more on 
the mass present than the spacing. Hence there is the possibility, which needs 
further investigation, that the integral can be taken as zero to a first approxima- 
tio n. 

Appendix B. Circulation and compressibility 
In  this appendix we seek to clarify the assumption of incompressibility i n  

ferromagnetic fluids. The change in circulation I? on a closed fluid loop is given 

where we have neglected the effect of viscosity and free currents, and we have 
introduced the force expression (15). The analysis of appendix A gives 
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If the magnetization per unit mass vM = M / p  were to be a function of H and 
T only, both the first and last terms in the braces of (Bl )  can be reduced to 
pure gradients under isothermal conditions. In general we have 

gradp* poMgrad H + ____ 
P P 

= - v g r a d p o - p o v ~ g r a d H -  
av 

- ( ~ ~ p o $  ( v y ) d H )  gradT+povMgradH, 

which after some manipulation gives 

gradp* poMgrad H + _- 
P P 

Substitution from (B2) in (B 1) shows that the change in circulation is precisely 
zero in the absence of temperature gradients, since po  is a function of density 
only at  constant temperature (and fortunately since it is not too difficult to  
imagine a scheme which directly contravenes the second law of thermodynamics 
without this condition on circulation). 

It is now a trivial matter to justify the elementary formulation given in $ 2 . 2 .  
We can assume a stationary isothermal fluidirrespective of compressibility effects. 
The problem only requires an adequate approximation to the static force balance. 
We have 

dp"+pgdzi-poMdH = 0, (B 3) 

and here z is assumed to be directed upwards. We write p = p + Sp, where p is a 
standard density, define a = M(p,  H ,  T ) ,  and substitute in (B 3) to give 

The terms on the right-hand side are clearly negligible in comparison to the cor- 
responding ones on the left for a liquid. Since @(H) is usually only known to the 
same order of approximation, no special condition on the density need be applied 
in interpretation of the magnetization curves. We therefore obtain equation (16) 
of $2.3. 
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FIGURE 4. Interface between ferromapetic fluid and air for a magnetization approximately 
0.8 9 ;  above critical with p/p0 = 1.388. Exposure time 1 msec using a ring source of flash 
illumination concentric with the lens. Highlights indicate where the surface was flat enough 
for direct reflexion of the light. 

(Facing p .  688) 



Plclte 2 

FIGURE 5 .  Tntcrfacc bctwccri fwromagnct,ic flnid and air for a magnetization approsimatcly 
3 abovo critical \+ ithp,'p, = 1.388. Photography as iin figure 4. The more isolatod highlights 
represent peaks. 




